
:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous
Programming Models and MPI Through Continuations

Joseph Schuchart, Christoph Niethammer, José Gracia
HLRS, Stuttgart, Germany

EuroMPI’20

1/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI and the Emergence of Asynchronous Programming Models

Asynchronous Programming Models: C++ std::async, OpenMP tasks, TBB . . .
I Dispatching work to a scheduler for eventual execution
I Constraints on order of execution (dependencies, data-flow, . . .)

I MPI ≈ dependencies not exposed to the scheduler
I Coordinating interaction with MPI is tedious
I Test-yield cycles are inefficient, at best

I Previously proposed: integration of higher-level concurrency
abstractions with the MPI layer

#pragma omp task depend(in: sendbuf)

{

MPI_Send(sendbuf , myrank , ...);

}

#pragma omp task depend(out: recvbuf)

{

MPI_Recv(recvbuf , myrank , ...);

}

Application

MPI Task Library
(OmpSs)

TAMPI

Thread library (pthreads)

Application

MPI

 ULT Library
(Argobots, Qthreads)

OpenMP

Thread library (pthreads)

Not portable!

2/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI and the Emergence of Asynchronous Programming Models

Asynchronous Programming Models: C++ std::async, OpenMP tasks, TBB . . .
I Dispatching work to a scheduler for eventual execution
I Constraints on order of execution (dependencies, data-flow, . . .)

I MPI ≈ dependencies not exposed to the scheduler
I Coordinating interaction with MPI is tedious
I Test-yield cycles are inefficient, at best

I Previously proposed: integration of higher-level concurrency
abstractions with the MPI layer

#pragma omp task depend(in: sendbuf)

{

MPI_Send(sendbuf , myrank , ...);

}

#pragma omp task depend(out: recvbuf)

{

MPI_Recv(recvbuf , myrank , ...);

}

Application

MPI Task Library
(OmpSs)

TAMPI

Thread library (pthreads)

Application

MPI

 ULT Library
(Argobots, Qthreads)

OpenMP

Thread library (pthreads)

Not portable!

2/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI and the Emergence of Asynchronous Programming Models

Asynchronous Programming Models: C++ std::async, OpenMP tasks, TBB . . .
I Dispatching work to a scheduler for eventual execution
I Constraints on order of execution (dependencies, data-flow, . . .)

I MPI ≈ dependencies not exposed to the scheduler
I Coordinating interaction with MPI is tedious
I Test-yield cycles are inefficient, at best
I Previously proposed: integration of higher-level concurrency

abstractions with the MPI layer

#pragma omp task depend(in: sendbuf)

{

MPI_Send(sendbuf , myrank , ...);

}

#pragma omp task depend(out: recvbuf)

{

MPI_Recv(recvbuf , myrank , ...);

}

Application

MPI Task Library
(OmpSs)

TAMPI

Thread library (pthreads)

Application

MPI

 ULT Library
(Argobots, Qthreads)

OpenMP

Thread library (pthreads)

Not portable!

2/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI and the Emergence of Asynchronous Programming Models

Asynchronous Programming Models: C++ std::async, OpenMP tasks, TBB . . .
I Dispatching work to a scheduler for eventual execution
I Constraints on order of execution (dependencies, data-flow, . . .)

I MPI ≈ dependencies not exposed to the scheduler
I Coordinating interaction with MPI is tedious
I Test-yield cycles are inefficient, at best
I Previously proposed: integration of higher-level concurrency

abstractions with the MPI layer

#pragma omp task depend(in: sendbuf)

{

MPI_Send(sendbuf , myrank , ...);

}

#pragma omp task depend(out: recvbuf)

{

MPI_Recv(recvbuf , myrank , ...);

}

Application

MPI Task Library
(OmpSs)

TAMPI

Thread library (pthreads)

Application

MPI

 ULT Library
(Argobots, Qthreads)

OpenMP

Thread library (pthreads)

Not portable!

2/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI and the Emergence of Asynchronous Programming Models

Asynchronous Programming Models: C++ std::async, OpenMP tasks, TBB . . .
I Dispatching work to a scheduler for eventual execution
I Constraints on order of execution (dependencies, data-flow, . . .)

I MPI ≈ dependencies not exposed to the scheduler
I Coordinating interaction with MPI is tedious
I Test-yield cycles are inefficient, at best
I Previously proposed: integration of higher-level concurrency

abstractions with the MPI layer

#pragma omp task depend(in: sendbuf)

{

MPI_Send(sendbuf , myrank , ...);

}

#pragma omp task depend(out: recvbuf)

{

MPI_Recv(recvbuf , myrank , ...);

}

Application

MPI Task Library
(OmpSs)

TAMPI

Thread library (pthreads)

Application

MPI

 ULT Library
(Argobots, Qthreads)

OpenMP

Thread library (pthreads)

Not portable!

2/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI and the Emergence of Asynchronous Programming Models

Asynchronous Programming Models: C++ std::async, OpenMP tasks, TBB . . .
I Dispatching work to a scheduler for eventual execution
I Constraints on order of execution (dependencies, data-flow, . . .)

I MPI ≈ dependencies not exposed to the scheduler
I Coordinating interaction with MPI is tedious
I Test-yield cycles are inefficient, at best
I Previously proposed: integration of higher-level concurrency

abstractions with the MPI layer

#pragma omp task depend(in: sendbuf)

{

MPI_Send(sendbuf , myrank , ...);

}

#pragma omp task depend(out: recvbuf)

{

MPI_Recv(recvbuf , myrank , ...);

}

Application

MPI Task Library
(OmpSs)

TAMPI

Thread library (pthreads)

Application

MPI

 ULT Library
(Argobots, Qthreads)

OpenMP

Thread library (pthreads)

Not portable!

2/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Threads in the MPI Standard

The two main requirements for a thread-compliant implementation:
1. All MPI calls are thread-safe.
2. Blocking MPI calls will block the calling thread only, allowing another thread to

execute, if available.
MPI 3.1, §12.4.1

Correct MPI Implementations:
I Prevent internal data structure corruption
I Release mutexes/locks before blocking
I Pthreads integration always thread-compliant

Portable Applications:
I Do not rely on implementation details
I Ensure all communication started eventually
I Coordinate MPI↔ scheduler interaction

What constitutes a thread?

3/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Threads in the MPI Standard

The two main requirements for a thread-compliant implementation:
1. All MPI calls are thread-safe.
2. Blocking MPI calls will block the calling thread only, allowing another thread to

execute, if available.
MPI 3.1, §12.4.1

Correct MPI Implementations:
I Prevent internal data structure corruption
I Release mutexes/locks before blocking
I Pthreads integration always thread-compliant

Portable Applications:
I Do not rely on implementation details
I Ensure all communication started eventually
I Coordinate MPI↔ scheduler interaction

What constitutes a thread?

3/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Threads in the MPI Standard

The two main requirements for a thread-compliant implementation:
1. All MPI calls are thread-safe.
2. Blocking MPI calls will block the calling thread only, allowing another thread to

execute, if available.
MPI 3.1, §12.4.1

Correct MPI Implementations:
I Prevent internal data structure corruption
I Release mutexes/locks before blocking
I Pthreads integration always thread-compliant

Portable Applications:
I Do not rely on implementation details
I Ensure all communication started eventually
I Coordinate MPI↔ scheduler interaction

What constitutes a thread?

3/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Threads in the MPI Standard

The two main requirements for a thread-compliant implementation:
1. All MPI calls are thread-safe.
2. Blocking MPI calls will block the calling thread only, allowing another thread to

execute, if available.
MPI 3.1, §12.4.1

Correct MPI Implementations:
I Prevent internal data structure corruption
I Release mutexes/locks before blocking
I Pthreads integration always thread-compliant

Portable Applications:
I Do not rely on implementation details
I Ensure all communication started eventually
I Coordinate MPI↔ scheduler interaction

What constitutes a thread?

3/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

A decade-old problem. . .

We’re actually in a thread/process terminology crisis in Linux. Various people have various
ideas about what we should mean by “thread,” “process,” “task,” and “thread group.”
https: // lwn. net/ Articles/ 81790/ , 2004

16 years later, the HPC community is in a similar situation. . .

User Thread

User-Space
Thread

User-Level
Thread (ULT)

Kernel Thread

Kernel-Space
Thread

Kernel-Level
Thread

Light-Weight
Process (LWP)

Thread

FiberExecution
Stream

Shepherd

Qthread

4/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

https://lwn.net/Articles/81790/

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

A decade-old problem. . .

We’re actually in a thread/process terminology crisis in Linux. Various people have various
ideas about what we should mean by “thread,” “process,” “task,” and “thread group.”
https: // lwn. net/ Articles/ 81790/ , 2004

16 years later, the HPC community is in a similar situation. . .

User Thread

User-Space
Thread

User-Level
Thread (ULT)

Kernel Thread

Kernel-Space
Thread

Kernel-Level
Thread

Light-Weight
Process (LWP)

Thread

FiberExecution
Stream

Shepherd

Qthread

4/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

https://lwn.net/Articles/81790/

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Taxonomy used in this work (excerpt)

Kernel Thread Thread in kernel space
(I/O, signal handling, Light-Weight Process (LWP))

User Thread Lowest system-level concurrency abstraction in user
space, mapped 1:1 or N:M to LWP, scheduled
preemptively (aka. a thread)

Fiber User-space execution context (stack/registers),
scheduled cooperatively onto user threads

Task Package of work, execution state in fiber or thread

Kernel
Space

User
Space

Hardware

Kernel Scheduler

Fiber Scheduler

Kernel
Threads

LWP

N:M User Thread Scheduler

Process

Processors

Task Scheduler

Tasks

Fibers

User
Threads

Observation:
I User-Level Threads (ULT) are fibers (like boost.fiber, MS Fibers, . . .)
I Underlying Shepherds, Execution Streams, . . . are threads

Recommended read:
Gor Nishanov: Fibers under the magnifying glass, 2018.

User-Level
Thread (ULT) Fiber Qthread

Kernel-Level
Thread Shepherd Execution

Stream Thread

5/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Taxonomy used in this work (excerpt)

Kernel Thread Thread in kernel space
(I/O, signal handling, Light-Weight Process (LWP))

User Thread Lowest system-level concurrency abstraction in user
space, mapped 1:1 or N:M to LWP, scheduled
preemptively (aka. a thread)

Fiber User-space execution context (stack/registers),
scheduled cooperatively onto user threads

Task Package of work, execution state in fiber or thread

Kernel
Space

User
Space

Hardware

Kernel Scheduler

Fiber Scheduler

Kernel
Threads

LWP

N:M User Thread Scheduler

Process

Processors

Task Scheduler

Tasks

Fibers

User
Threads

Observation:
I User-Level Threads (ULT) are fibers (like boost.fiber, MS Fibers, . . .)
I Underlying Shepherds, Execution Streams, . . . are threads

Recommended read:
Gor Nishanov: Fibers under the magnifying glass, 2018.

User-Level
Thread (ULT) Fiber Qthread

Kernel-Level
Thread Shepherd Execution

Stream Thread

5/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Fiber Integration (Should Be) Considered Harmful1

Application

MPI Task Library
(OmpSs)

TAMPI

Thread library (pthreads)

Application

MPI

 ULT Library
(Argobots, Qthreads)

OpenMP

Thread library (pthreads)

1Dijkstra is said to have penned his famous letter after a talk on a continuation-like concept in Algol60.

6/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Let’s separate concerns

I MPI should manage communication concerns (requests)
I Application layer should manage task concerns

How to loosely couple different concerns?

Continuations

(Asynchronous)
Activity Continuation

Activity
Complete

Example: std::future::then

Application

MPI

Thread library
(pthreads)

 ULT
Task Library
(OpenMP)

???

7/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Let’s separate concerns

I MPI should manage communication concerns (requests)
I Application layer should manage task concerns

How to loosely couple different concerns?

Continuations

(Asynchronous)
Activity Continuation

Activity
Complete

Example: std::future::then

Application

MPI

Thread library
(pthreads)

 ULT
Task Library
(OpenMP)

???

7/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Let’s separate concerns

I MPI should manage communication concerns (requests)
I Application layer should manage task concerns

How to loosely couple different concerns?

Continuations

(Asynchronous)
Activity Continuation

Activity
Complete

Example: std::future::then

Application

MPI

Continuation

Thread library
(pthreads)

 ULT
Task Library
(OpenMP)

7/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface

I Introduce 3 new functions:
I MPIX Continue init: initialize a continuation request
I MPIX Continue: attach a continuation to single operation
I MPIX Continueall: attach a continuation to a set of operations

(executed once all are complete)

I Continuation requests accumulate and track active
continuations
I Progress and check for completion
I May itself have a continuation attached

I One continuation per non-persistent operation, multiple for
persistent operations

I See paper for details on continuation requests, restrictions,
status handling, rationales, . . .

I Benefit of having MPI interface: invocation as soon as
implementation sees completion

/** Initialize a continuation request */

int MPIX_Continue_init(MPI_Request *cont_req);

/* Callback function signature */

void (MPIX_Continue_cb_funtion)(

void *user_data ,

MPI_Status *statuses);

/* Attach a continuation to a single operation */

int MPIX_Continue(

MPI_Request *request ,

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status *status ,

MPI_Request cont_req);

/* Set up continuation to be executed once all

* operation have completed */

int MPIX_Continueall(

int count ,

MPI_Request requests[],

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status statuses[],

MPI_Request cont_req);

8/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface

I Introduce 3 new functions:
I MPIX Continue init: initialize a continuation request
I MPIX Continue: attach a continuation to single operation
I MPIX Continueall: attach a continuation to a set of operations

(executed once all are complete)

I Continuation requests accumulate and track active
continuations
I Progress and check for completion
I May itself have a continuation attached

I One continuation per non-persistent operation, multiple for
persistent operations

I See paper for details on continuation requests, restrictions,
status handling, rationales, . . .

I Benefit of having MPI interface: invocation as soon as
implementation sees completion

/** Initialize a continuation request */

int MPIX_Continue_init(MPI_Request *cont_req);

/* Callback function signature */

void (MPIX_Continue_cb_funtion)(

void *user_data ,

MPI_Status *statuses);

/* Attach a continuation to a single operation */

int MPIX_Continue(

MPI_Request *request ,

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status *status ,

MPI_Request cont_req);

/* Set up continuation to be executed once all

* operation have completed */

int MPIX_Continueall(

int count ,

MPI_Request requests[],

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status statuses[],

MPI_Request cont_req);

8/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface

I Introduce 3 new functions:
I MPIX Continue init: initialize a continuation request
I MPIX Continue: attach a continuation to single operation
I MPIX Continueall: attach a continuation to a set of operations

(executed once all are complete)

I Continuation requests accumulate and track active
continuations
I Progress and check for completion
I May itself have a continuation attached

I One continuation per non-persistent operation, multiple for
persistent operations

I See paper for details on continuation requests, restrictions,
status handling, rationales, . . .

I Benefit of having MPI interface: invocation as soon as
implementation sees completion

/** Initialize a continuation request */

int MPIX_Continue_init(MPI_Request *cont_req);

/* Callback function signature */

void (MPIX_Continue_cb_funtion)(

void *user_data ,

MPI_Status *statuses);

/* Attach a continuation to a single operation */

int MPIX_Continue(

MPI_Request *request ,

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status *status ,

MPI_Request cont_req);

/* Set up continuation to be executed once all

* operation have completed */

int MPIX_Continueall(

int count ,

MPI_Request requests[],

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status statuses[],

MPI_Request cont_req);

8/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface

I Introduce 3 new functions:
I MPIX Continue init: initialize a continuation request
I MPIX Continue: attach a continuation to single operation
I MPIX Continueall: attach a continuation to a set of operations

(executed once all are complete)
I Continuation requests accumulate and track active

continuations
I Progress and check for completion
I May itself have a continuation attached

I One continuation per non-persistent operation, multiple for
persistent operations

I See paper for details on continuation requests, restrictions,
status handling, rationales, . . .

I Benefit of having MPI interface: invocation as soon as
implementation sees completion

/** Initialize a continuation request */

int MPIX_Continue_init(MPI_Request *cont_req);

/* Callback function signature */

void (MPIX_Continue_cb_funtion)(

void *user_data ,

MPI_Status *statuses);

/* Attach a continuation to a single operation */

int MPIX_Continue(

MPI_Request *request ,

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status *status ,

MPI_Request cont_req);

/* Set up continuation to be executed once all

* operation have completed */

int MPIX_Continueall(

int count ,

MPI_Request requests[],

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status statuses[],

MPI_Request cont_req);

8/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface

I Introduce 3 new functions:
I MPIX Continue init: initialize a continuation request
I MPIX Continue: attach a continuation to single operation
I MPIX Continueall: attach a continuation to a set of operations

(executed once all are complete)
I Continuation requests accumulate and track active

continuations
I Progress and check for completion
I May itself have a continuation attached

I One continuation per non-persistent operation, multiple for
persistent operations

I See paper for details on continuation requests, restrictions,
status handling, rationales, . . .

I Benefit of having MPI interface: invocation as soon as
implementation sees completion

/** Initialize a continuation request */

int MPIX_Continue_init(MPI_Request *cont_req);

/* Callback function signature */

void (MPIX_Continue_cb_funtion)(

void *user_data ,

MPI_Status *statuses);

/* Attach a continuation to a single operation */

int MPIX_Continue(

MPI_Request *request ,

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status *status ,

MPI_Request cont_req);

/* Set up continuation to be executed once all

* operation have completed */

int MPIX_Continueall(

int count ,

MPI_Request requests[],

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status statuses[],

MPI_Request cont_req);

8/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface

I Introduce 3 new functions:
I MPIX Continue init: initialize a continuation request
I MPIX Continue: attach a continuation to single operation
I MPIX Continueall: attach a continuation to a set of operations

(executed once all are complete)
I Continuation requests accumulate and track active

continuations
I Progress and check for completion
I May itself have a continuation attached

I One continuation per non-persistent operation, multiple for
persistent operations

I See paper for details on continuation requests, restrictions,
status handling, rationales, . . .

I Benefit of having MPI interface: invocation as soon as
implementation sees completion

/** Initialize a continuation request */

int MPIX_Continue_init(MPI_Request *cont_req);

/* Callback function signature */

void (MPIX_Continue_cb_funtion)(

void *user_data ,

MPI_Status *statuses);

/* Attach a continuation to a single operation */

int MPIX_Continue(

MPI_Request *request ,

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status *status ,

MPI_Request cont_req);

/* Set up continuation to be executed once all

* operation have completed */

int MPIX_Continueall(

int count ,

MPI_Request requests[],

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status statuses[],

MPI_Request cont_req);

8/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface

I Introduce 3 new functions:
I MPIX Continue init: initialize a continuation request
I MPIX Continue: attach a continuation to single operation
I MPIX Continueall: attach a continuation to a set of operations

(executed once all are complete)
I Continuation requests accumulate and track active

continuations
I Progress and check for completion
I May itself have a continuation attached

I One continuation per non-persistent operation, multiple for
persistent operations

I See paper for details on continuation requests, restrictions,
status handling, rationales, . . .

I Benefit of having MPI interface: invocation as soon as
implementation sees completion

/** Initialize a continuation request */

int MPIX_Continue_init(MPI_Request *cont_req);

/* Callback function signature */

void (MPIX_Continue_cb_funtion)(

void *user_data ,

MPI_Status *statuses);

/* Attach a continuation to a single operation */

int MPIX_Continue(

MPI_Request *request ,

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status *status ,

MPI_Request cont_req);

/* Set up continuation to be executed once all

* operation have completed */

int MPIX_Continueall(

int count ,

MPI_Request requests[],

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status statuses[],

MPI_Request cont_req);

8/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface: Example

omp_event_handle_t event;

/* set up continuation request */

MPI_Request contreq;

MPIX_Continue_init (& contreq);

/* task to receive data */

#pragma omp task depend(out: recvbuf) detach(event)

{

int flag;

MPI_Request opreq;

MPI_Irecv(recvbuf , ..., &opreq);

MPIX_Continue (*opreq , &flag , /* flag set to 1 if complete */

&complete_event , /* callback to invoke */

(intptr_t)event , /* argument to pass */

MPI_STATUS_IGNORE , contreq);

if (flag) complete_event(event);

}

/* task to process received data */

#pragma omp task depend(in: recvbuf)

{

process_received_data(recvbuf);

}

/* wait for all tasks to complete */

#pragma omp taskwait

MPI_Request_free (& contreq);

Continuation Callback
void complete_event(

void *cb_data ,

MPI_Status *status)

{

omp_event_handle_t event = (omp_event_handle_t) cb_data;

/* release dependencies waiting for event */

omp_fulfill_event(event);

}

Progress Function
void mpi_progress ()

{

int flag; // ignored

MPI_Test (&contreq , &flag , MPI_STATUS_IGNORE);

}

 Progress thread, recurring task, or service

9/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface: Example

omp_event_handle_t event;

/* set up continuation request */

MPI_Request contreq;

MPIX_Continue_init (& contreq);

/* task to receive data */

#pragma omp task depend(out: recvbuf) detach(event)

{

int flag;

MPI_Request opreq;

MPI_Irecv(recvbuf , ..., &opreq);

MPIX_Continue (*opreq , &flag , /* flag set to 1 if complete */

&complete_event , /* callback to invoke */

(intptr_t)event , /* argument to pass */

MPI_STATUS_IGNORE , contreq);

if (flag) complete_event(event);

}

/* task to process received data */

#pragma omp task depend(in: recvbuf)

{

process_received_data(recvbuf);

}

/* wait for all tasks to complete */

#pragma omp taskwait

MPI_Request_free (& contreq);

Continuation Callback
void complete_event(

void *cb_data ,

MPI_Status *status)

{

omp_event_handle_t event = (omp_event_handle_t) cb_data;

/* release dependencies waiting for event */

omp_fulfill_event(event);

}

Progress Function
void mpi_progress ()

{

int flag; // ignored

MPI_Test (&contreq , &flag , MPI_STATUS_IGNORE);

}

 Progress thread, recurring task, or service

9/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface: Example

omp_event_handle_t event;

/* set up continuation request */

MPI_Request contreq;

MPIX_Continue_init (& contreq);

/* task to receive data */

#pragma omp task depend(out: recvbuf) detach(event)

{

int flag;

MPI_Request opreq;

MPI_Irecv(recvbuf , ..., &opreq);

MPIX_Continue (*opreq , &flag , /* flag set to 1 if complete */

&complete_event , /* callback to invoke */

(intptr_t)event , /* argument to pass */

MPI_STATUS_IGNORE , contreq);

if (flag) complete_event(event);

}

/* task to process received data */

#pragma omp task depend(in: recvbuf)

{

process_received_data(recvbuf);

}

/* wait for all tasks to complete */

#pragma omp taskwait

MPI_Request_free (& contreq);

Continuation Callback
void complete_event(

void *cb_data ,

MPI_Status *status)

{

omp_event_handle_t event = (omp_event_handle_t) cb_data;

/* release dependencies waiting for event */

omp_fulfill_event(event);

}

Progress Function
void mpi_progress ()

{

int flag; // ignored

MPI_Test (&contreq , &flag , MPI_STATUS_IGNORE);

}

 Progress thread, recurring task, or service

9/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuation Interface: Implementation

Proof-of-Concept implementation in Open MPI
I Request without continuation: +12 instructions (≈ 2%)
I Request with continuation: +300 instructions, incl. registration and invocation

Test system: Dual-socket 12C Intel Haswell, ConnectX-3

OSU P2P using Isend/Irecv and MPI Continuations
to handle reply
 Small latency increase for small messages

 1

 10

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

n
cy

 [
u
s]

Message Size [B]

OMPI Master (Nonblocking)
OMPI Continue (Nonblocking)
OMPI Continue (Continuation)

10/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuation Interface: Implementation

Proof-of-Concept implementation in Open MPI
I Request without continuation: +12 instructions (≈ 2%)
I Request with continuation: +300 instructions, incl. registration and invocation

Test system: Dual-socket 12C Intel Haswell, ConnectX-3

OSU P2P using Isend/Irecv and MPI Continuations
to handle reply
 Small latency increase for small messages

 1

 10

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

n
cy

 [
u
s]

Message Size [B]

OMPI Master (Nonblocking)
OMPI Continue (Nonblocking)
OMPI Continue (Continuation)

10/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations vs Argobots Integration: Message Scaling

OSU multi-threaded latency benchmark using Argobots
1 Execution Stream (thread), 1 fiber

100

101

102

0 1 2 4 8 16 32 6412
8
25

6
51

2 1K 2K 4K 8K16
K
32

K
64

K
12

8K

La
te

n
cy

 [
u
s]

Message Size [B]

Continue ABT ES1 F1
OMPI ABT ES1 F1

MPICH ABT ES1 F1

 Yield used in MPI implementations provides
lower latencies (23%)

12 Execution Streams (threads), 12 fibers

100

101

102

103

0 1 2 4 8 16 32 6412
8
25

6
51

2 1K 2K 4K 8K16
K
32

K
64

K
12

8K

La
te

n
cy

 [
u
s]

Message Size [B]

Continue ABT ES12 F12
OMPI ABT ES12 F12

MPICH ABT ES12 F12

 Conditional variables used in continuations
provide significantly lower latencies (2− 3×)

11/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations vs Argobots Integration: Message Scaling

OSU multi-threaded latency benchmark using Argobots
1 Execution Stream (thread), 1 fiber

100

101

102

0 1 2 4 8 16 32 6412
8
25

6
51

2 1K 2K 4K 8K16
K
32

K
64

K
12

8K

La
te

n
cy

 [
u
s]

Message Size [B]

Continue ABT ES1 F1
OMPI ABT ES1 F1

MPICH ABT ES1 F1

 Yield used in MPI implementations provides
lower latencies (23%)

12 Execution Streams (threads), 12 fibers

100

101

102

103

0 1 2 4 8 16 32 6412
8
25

6
51

2 1K 2K 4K 8K16
K
32

K
64

K
12

8K

La
te

n
cy

 [
u
s]

Message Size [B]

Continue ABT ES12 F12
OMPI ABT ES12 F12

MPICH ABT ES12 F12

 Conditional variables used in continuations
provide significantly lower latencies (2− 3×)

11/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations vs Argobots Integration: Fiber Scaling

OSU multi-threaded latency benchmark using Argobots (1 B messages)

1 Execution Stream (thread), 1 – 128 fibers

 1

 10

 100

 1 2 4 8 12 24 48 128

La
te

n
cy

 [
u
s]

Number of fibers

Continue ABT ES1
OMPI ABT ES1

MPICH ABT ES1

12 Execution Streams, 12 – 128 fibers

 1

 10

 100

 12 24 48 96 128

La
te

n
cy

 [
u
s]

Number of fibers

Continue ABT ES12
OMPI ABT ES12

MPICH ABT ES12

12/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuation: NPB BT-MZ

NPB BT-MZ C++ port using Clang OpenMP detached tasks and OmpSs-2

 0

 10

 20

 30

 40

 50

4 8 16 32 64

S
p

e
e
d

u
p

 [
%

]

Number of nodes

MPI/OMP Tasks
MPI/OMP Detached Tasks
TAMPI/OmpSs-2
MPI/OmpSs-2 Continue

Class D, Speedup over C++ port

+1.2% over TAMPI

+6.8% over OpenMP tasks with bulk communication

13/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Conclusion

Reconsider convoluted use of term thread in the MPI/HPC community

Integration of high-level concurrency abstractions in MPI potentially harmful

Proposal: Loose coupling through MPI Continuations

Progress still an issue, but continuation requests provide means to trigger progress

Results demonstrate efficient implementation in Open MPI

14/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Conclusion

Reconsider convoluted use of term thread in the MPI/HPC community

Integration of high-level concurrency abstractions in MPI potentially harmful

Proposal: Loose coupling through MPI Continuations

Progress still an issue, but continuation requests provide means to trigger progress

Results demonstrate efficient implementation in Open MPI

14/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Conclusion

Reconsider convoluted use of term thread in the MPI/HPC community

Integration of high-level concurrency abstractions in MPI potentially harmful

Proposal: Loose coupling through MPI Continuations

Progress still an issue, but continuation requests provide means to trigger progress

Results demonstrate efficient implementation in Open MPI

14/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Conclusion

Reconsider convoluted use of term thread in the MPI/HPC community

Integration of high-level concurrency abstractions in MPI potentially harmful

Proposal: Loose coupling through MPI Continuations

Progress still an issue, but continuation requests provide means to trigger progress

Results demonstrate efficient implementation in Open MPI

14/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Conclusion

Reconsider convoluted use of term thread in the MPI/HPC community

Integration of high-level concurrency abstractions in MPI potentially harmful

Proposal: Loose coupling through MPI Continuations

Progress still an issue, but continuation requests provide means to trigger progress

Results demonstrate efficient implementation in Open MPI

14/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Questions?

Reference implementation: https://github.com/devreal/ompi/tree/mpi-continue-master

(Any) Feedback welcome at: schuchart(at)hlrs.de

15/15 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

https://github.com/devreal/ompi/tree/mpi-continue-master
mailto:schuchart@hlrs.de

:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Google announced “ULT kernel patches”

I Adds futex switchto primitive
I Threads still managed by kernel, user space has some control
I No idea where the N:M part is here...
I Again: ULT is misleading...
I The Register: mentions fiber
I https://www.theregister.com/2020/08/10/google_scheduling_code_reaches_linux/

1/1 :: Fibers are not (P)Threads: The Case for Loose Coupling of Asynchronous Programming Models and MPI Through Continuations :: EuroMPI’20 ::

https://www.theregister.com/2020/08/10/google_scheduling_code_reaches_linux/

	Anhang

