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MPI and the Emergence of Asynchronous Programming Models

Asynchronous Programming Models: C++ std::async, OpenMP tasks, TBB . . .
I Dispatching work to a scheduler for eventual execution
I Constraints on order of execution (dependencies, data-flow, . . . )

I MPI ≈ dependencies not exposed to the scheduler
I Coordinating interaction with MPI is tedious
I Test-yield cycles are inefficient, at best

I Previously proposed: integration of higher-level concurrency
abstractions with the MPI layer

#pragma omp task depend(in: sendbuf)

{

MPI_Send(sendbuf , myrank , ...);

}

#pragma omp task depend(out: recvbuf)

{

MPI_Recv(recvbuf , myrank , ...);

}

Application

MPI Task Library
(OmpSs)

TAMPI

Thread library (pthreads)

Application

MPI    

        ULT Library
(Argobots, Qthreads)

OpenMP

Thread library (pthreads)

Not portable!
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Threads in the MPI Standard

The two main requirements for a thread-compliant implementation:
1. All MPI calls are thread-safe.
2. Blocking MPI calls will block the calling thread only, allowing another thread to

execute, if available.
MPI 3.1, §12.4.1

Correct MPI Implementations:
I Prevent internal data structure corruption
I Release mutexes/locks before blocking
I Pthreads integration always thread-compliant

Portable Applications:
I Do not rely on implementation details
I Ensure all communication started eventually
I Coordinate MPI↔ scheduler interaction

What constitutes a thread?
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A decade-old problem. . .

We’re actually in a thread/process terminology crisis in Linux. Various people have various
ideas about what we should mean by “thread,” “process,” “task,” and “thread group.”
https: // lwn. net/ Articles/ 81790/ , 2004

16 years later, the HPC community is in a similar situation. . .
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Taxonomy used in this work (excerpt)

Kernel Thread Thread in kernel space
(I/O, signal handling, Light-Weight Process (LWP))

User Thread Lowest system-level concurrency abstraction in user
space, mapped 1:1 or N:M to LWP, scheduled
preemptively (aka. a thread)

Fiber User-space execution context (stack/registers),
scheduled cooperatively onto user threads

Task Package of work, execution state in fiber or thread

Kernel
Space

User
Space

Hardware

Kernel Scheduler

Fiber Scheduler

Kernel 
Threads

LWP

N:M User Thread Scheduler

Process

Processors

Task Scheduler

Tasks

Fibers

User
Threads

Observation:
I User-Level Threads (ULT) are fibers (like boost.fiber, MS Fibers, . . . )
I Underlying Shepherds, Execution Streams, . . . are threads

Recommended read:
Gor Nishanov: Fibers under the magnifying glass, 2018.

User-Level
Thread (ULT) Fiber Qthread

Kernel-Level
Thread Shepherd Execution

Stream Thread
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Fiber Integration (Should Be) Considered Harmful1

Application

MPI Task Library
(OmpSs)

TAMPI

Thread library (pthreads)

Application

MPI    

        ULT Library
(Argobots, Qthreads)

OpenMP

Thread library (pthreads)

1Dijkstra is said to have penned his famous letter after a talk on a continuation-like concept in Algol60.
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Let’s separate concerns

I MPI should manage communication concerns (requests)
I Application layer should manage task concerns

How to loosely couple different concerns?

Continuations

(Asynchronous)
Activity Continuation

Activity
Complete

Example: std::future::then

Application

MPI

Thread library
(pthreads)

         ULT
Task Library
(OpenMP)

???
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MPI Continuations Interface

I Introduce 3 new functions:
I MPIX Continue init: initialize a continuation request
I MPIX Continue: attach a continuation to single operation
I MPIX Continueall: attach a continuation to a set of operations

(executed once all are complete)

I Continuation requests accumulate and track active
continuations
I Progress and check for completion
I May itself have a continuation attached

I One continuation per non-persistent operation, multiple for
persistent operations

I See paper for details on continuation requests, restrictions,
status handling, rationales, . . .

I Benefit of having MPI interface: invocation as soon as
implementation sees completion

/** Initialize a continuation request */

int MPIX_Continue_init(MPI_Request *cont_req );

/* Callback function signature */

void (MPIX_Continue_cb_funtion )(

void *user_data ,

MPI_Status *statuses );

/* Attach a continuation to a single operation */

int MPIX_Continue(

MPI_Request *request ,

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status *status ,

MPI_Request cont_req );

/* Set up continuation to be executed once all

* operation have completed */

int MPIX_Continueall(

int count ,

MPI_Request requests[],

int *flag ,

MPIX_Continue_cb_funtion *cont_cb ,

void *cb_data ,

MPI_Status statuses[],

MPI_Request cont_req );
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:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface
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status handling, rationales, . . .
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implementation sees completion
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:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations Interface: Example

omp_event_handle_t event;

/* set up continuation request */

MPI_Request contreq;

MPIX_Continue_init (& contreq );

/* task to receive data */

#pragma omp task depend(out: recvbuf) detach(event)

{

int flag;

MPI_Request opreq;

MPI_Irecv(recvbuf , ..., &opreq);

MPIX_Continue (*opreq , &flag , /* flag set to 1 if complete */

&complete_event , /* callback to invoke */

(intptr_t)event , /* argument to pass */

MPI_STATUS_IGNORE , contreq );

if (flag) complete_event(event);

}

/* task to process received data */

#pragma omp task depend(in: recvbuf)

{

process_received_data(recvbuf );

}

/* wait for all tasks to complete */

#pragma omp taskwait

MPI_Request_free (& contreq );

Continuation Callback
void complete_event(

void *cb_data ,

MPI_Status *status)

{

omp_event_handle_t event = (omp_event_handle_t) cb_data;

/* release dependencies waiting for event */

omp_fulfill_event(event );

}

Progress Function
void mpi_progress ()

{

int flag; // ignored

MPI_Test (&contreq , &flag , MPI_STATUS_IGNORE );

}

 Progress thread, recurring task, or service
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:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuation Interface: Implementation

Proof-of-Concept implementation in Open MPI
I Request without continuation: +12 instructions (≈ 2%)
I Request with continuation: +300 instructions, incl. registration and invocation

Test system: Dual-socket 12C Intel Haswell, ConnectX-3

OSU P2P using Isend/Irecv and MPI Continuations
to handle reply
 Small latency increase for small messages
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:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations vs Argobots Integration: Message Scaling

OSU multi-threaded latency benchmark using Argobots
1 Execution Stream (thread), 1 fiber
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 Yield used in MPI implementations provides
lower latencies (23%)

12 Execution Streams (threads), 12 fibers
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 Conditional variables used in continuations
provide significantly lower latencies (2− 3×)
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:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuations vs Argobots Integration: Fiber Scaling

OSU multi-threaded latency benchmark using Argobots (1 B messages)

1 Execution Stream (thread), 1 – 128 fibers
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:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

MPI Continuation: NPB BT-MZ

NPB BT-MZ C++ port using Clang OpenMP detached tasks and OmpSs-2
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:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Conclusion

Reconsider convoluted use of term thread in the MPI/HPC community

Integration of high-level concurrency abstractions in MPI potentially harmful

Proposal: Loose coupling through MPI Continuations

Progress still an issue, but continuation requests provide means to trigger progress

Results demonstrate efficient implementation in Open MPI
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:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Questions?

Reference implementation: https://github.com/devreal/ompi/tree/mpi-continue-master

(Any) Feedback welcome at: schuchart(at)hlrs.de
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:::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

Google announced “ULT kernel patches”

I Adds futex switchto primitive
I Threads still managed by kernel, user space has some control
I No idea where the N:M part is here...
I Again: ULT is misleading...
I The Register: mentions fiber
I https://www.theregister.com/2020/08/10/google_scheduling_code_reaches_linux/
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